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Arigorous and robust numerical procedure to treat surface reaction boundary con-
ditions for finite-volume schemes in unstructured meshes s presented. The procedure
is applicable to arbitrary cell topologies and multistep finite-rate surface reactions
of arbitrary complexity. The accuracy of the numerical procedure has been verified
by systematically comparing solutions obtained using unstructured meshes with per-
fectly orthogonal meshes for both two-dimensional and three-dimensional geome-
tries. Validation results presented for gallium arsenide growth in a full-scale commer-
cial metal organic-chemical vapor-deposition reactor, exhibit excellent match with
experimental data. @ 2001 Academic Press
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NOMENCLATURE

stoichiometric coefficients

surface area (R)

mass diffusion coefficient déth species (f1s)
Stefan flux (kg/m/s)

diffusion flux of kth species (kg/fis)

forward and reverse rate constants, respectively
unit vector connecting face center to cell center
molecular weight okth species (kg/kmol)

unit surface normal

number of gas-phase species

number of surface-adsorbed species

number of bulk species

number of steps in surface reaction mechanism
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S, production rate okth species (kmol/iis)

t time (s)

¥ tangential component of diffusion flux (kgf/s)
Us Stefan velocity (m/s)

V  volume of cell (nf)

Vi diffusion velocity (m/s)

Xk site fraction ofkth species

Y« mass fraction okth species

Greek

8 diffusion length-scale (m)

A molar concentration dfth species (kmol//)
o mass density (kg/A)

ps surface site density (kmol

Subscripts

cell center
wall (or reacting surface)
face

Superscripts

/  reactants
/1 products

1. INTRODUCTION

Many important technologies involve chemical reactions at solid surfaces. These incl
wafer processing by chemical vapor deposition (CVD) or etching [1-18], DNA separati
[19], and catalytic combustion [20, 21], among many others. During the past two deca
or so, numerical modeling has gained tremendous popularity in the semiconductor mat:
processing area [5—-12]. This can be attributed in part to modern, high-speed, afford:
computers and in part to the increased understanding of the chemical processes undel
semiconductor growth. In the semiconductor as well as the automotive industry, comp
tional fluid dynamics (CFD) based tools are now used routinely to study thin film grow
and catalytic combustion processes.

One of the main reasons CFD tools have not evolved as the most important de:
tool is the complexity associated with grid generation for real-life reactor chambers. |
example, a typical commercial metal organic-chemical vapor-deposition (MOCVD) reac
has helical induction coils around it (Fig. 1). These need to be modeled along with the res
the reactor to predict the current densities and consequently the joule heating in the subs
It goes without saying that generation of a grid for such three-dimensional (3D) geome
is more than an uphill task for a nonspecialist. During the past decade or so, it has
realized that the grid generation problem can be alleviated by using unstructured mes
as opposed to multidomain body-fitted grids. Not only is the grid generation technolc
for unstructured meshes quite mature (thanks to finite element methods!), but also it all
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FIG. 1. Photograph of a commercial horizontal MOCVD reactor (Crystal Specialties Model 425) showir
copper induction coils around the reactor.

tremendous advantages for complex geometries. With the growing need for modeling f
scale industrial reactors, itis fair to say now that unstructured meshes are the ones of ch
at least in some parts of the computational domain.

The numerical treatment of reacting surfaces in finite-volume schemes is straightforw
if the grid next to the surface is orthogonal. This has been discussed and implemented
number of researchers in the past for simple geometries [5—-10]. Complexities arise wher
boundary surfaces are irregular in shape and the grids adjacent to them are nonorthog
(Since unstructured grids are usually nonorthogonal, henceforth we will refer to nonorthi
onal meshes as “unstructured.”) This article presents a numerical procedure to treat sul
reaction boundary conditions at surfaces that have unstructured meshes adjacent to 1
The procedure outlined here is applicable to any arbitrary grid topology in both two and th
dimensions. In addition, it provides a detailed description of the numerical schemes requ
for the treatment of complex surface chemistry, including surface-adsorbed species.

2. MATHEMATICAL FORMULATION

2.1. Reaction-Diffusion Balance at Surface

At any stationary solid surface, the bulk flow velocity is zero (no-slip condition), an
diffusion is the only mechanism for species transport to and from the surface. In the abse
of chemical reactions at the surface, the net diffusive exchange of species between the
phase and the solid surface is zero, and the cell-center concentration of the species
be identical to the near-wall concentrations. If reactions occur at the surface, the near-
species concentrations will be determined by the balance of the reaction and diffusion flu
Mathematically this may be expressed as [11]

A-[p(Us+ViOYid = McSc Vk=1,2,..., N, (1)

wheref is the unit surface normal pointing from the boundary into the computation:
domain (Fig. 2) Ny is the total number of gas-phase speciets, the mixture density, and
Yk and Mg are the mass-fraction and molecular weight of kitle species, respectively.
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FIG. 2. Schematic of a control-volume next to a wall showing the surface normal and the vector connect
the face center with the cell center. The surface (or wall) is denoted by W and the cell center is denoted by C

The production rate of thkth speciesS,, due to chemical reaction at the surface, is ¢
complex, nonlinear function of the species mass-fractions and is discussed in detail I
The diffusion flux of thekth speciesJx, may be written using Fick’s law as [11]

Jk = pViYk = pD VY, 2

whereVy is the so-called diffusion velocity. Summation of Eq. (1) over all gas-phase spec
yields

Ng

Js=pﬁ'Us=ZMkSk, (3

k=1

sincez,f'il Jk = 0 by definition.Us is the so-called Stefan velocity, add = pfi - Us is
the so-called Stefan flux, normal to the surface. In the absence of deposition/etching,
Stefan flux is identically equal to zero. Equation (1), after rearrangement and substitu
of Egs. (2) and (3), may be rewritten as

A-[oDkVYi] = M & — JsVY. (4)

Now consider the finite-volume cell shown in Fig. 2is the unit surface normal of
the boundary face, arids the vector pointing from the face center of the boundary face
depicted by W, to the cell center of the adjacent cell, depicted by C. The discretizatior
the term on the left-hand side of Eq. (4) is fairly straightforward if the grid is Cartesic
(i.e., if the vectorgi andi are aligned), or if a transformation is invoked whereby the entir
geometry is transformed to a body-fitted coordinate system. The latter is not possible
an unstructured grid, and the former is a rare occurrence for problems of practical intet
The more common scenario is whemndi are misaligned. The right-hand side of Eq. (2)
may also be written as

oDk VY = (0D VY - A + (h x pDVYy) x 1. (5)
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Performing a dot-product of Eq. (5) with the vechﬂelds
(pDkVYi) -1 = (0DVYi- MA -1+ [(A x pDVYy) x ] -1 (6)

The quantityn - can be computed easily since both vectors are known directly from tt
geometry or grid information. It represents the normal distance from the cell center to
boundary and is, henceforth, denotedsb¥Equation (6) now can be written in discretized
form as

pDk(Yec — Yiw) = (pDkVYi - )8 + 3, (7)

whereYy c andYy w are the cell center and near-wall mass-fractions, respectively, of tl
kth speciesS represents the last term of Eq. (6) and physically represents the tangen
component of the diffusion flux at the surface. The firstterm on the right-hand side of Eq.
represents the normal component of the diffusion flux to the surface. Using Eqgs. (7)
(4), this term can be rewritten as

PD(Me —Yiw) 3

DkVYk-f =
P DKV Yk 3 3

= MeS — JsYk. (8)

The computation of the tangential component of the diffusion fluxs not straight-
forward and requires further examination. It can be computed by invoking the assumpt
that the tangential component of the diffusion flux at the wall is same as that at the «
center adjacent to the wall. This is nearly true for most applications, where the gradie
are strong in the direction normal to the wall (due to surface reaction) but are weak al
the wall. In any case, the assumption introduces a second-order error in computation
this approximationy may be written as

3 =[(A x pDVYilw) x ] - 1= [(A x pDxVYilc) x A] -1. 9)

The gradient at the cell center can be computed using the Gauss divergence theorem
Eq. (9) may be rewritten as

1 R
3= [ﬁxpDk<V E AfYk,fﬁf>Xﬁ]’la (10)
f

whereA; is the face area of fack, i is the unit face surface normal, aNds the volume

of the cell. The face values of the mass-fraction have been denot¥d dbpnd can be
computed by distance-weighted interpolation of the cell-center values for all faces exc
the boundary face in question, for which it is an unknown. It will be seen shortly that t
contribution from that face actually vanishes. Equation (10) can be reduced further ¢
rewritten as

p Dk

c\_’ODk A A A T —
\s_TZf:AfYk,f[nxnf Xn]-|— v

ZAfYkﬁf[ﬁf — A A1 (A1)
f

Two important observations must be made at this point. First, for the boundary face
questionfi = A, and the contribution of this face to the summation in Eq. (11) vanishe
Second, for a perfectly Cartesian grid the term vanishes.
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2.2. Surface Reaction Kinetics

As stated earlier, the molar production rate of kil speciesS,, because of chemi-
cal reaction at the surface, is a complex nonlinear function of the species mass-fracti
Consider a surface multistep (willepsSteps) surface reaction of the general form

Ng Ns Np
DA A+ > bBi9+ > ¢ Cib)
i=1 i=1

i=1
Ng Ng Np
=Y @A+ BiB©+D ¢Cb)  Vi=12... Neeps (12)
i=1 i=1 i=1

wherea;j, bj andc;j are stoichiometric coefficients of gas, adsorbed (denoted by (s)), a
bulk species (denoted by (b)), respectivély, Ns, andN, are total numbers of gas-phase,
adsorbed, and bulk (deposited or etched) species, respectively. For this reaction, the su
reaction rate may be expressed as [11]

Nsteps

Ng , Ns , Ng LN )
S=_ ok [JIadw []Bio1% — ki [Ttanw [JBion™ | @3)
j=1 i=1 i—1 i1 ey

whereks; are forward rates ankl; are reverse rates of thgh step, and the near-wall
gas-phase concentrations at the surface are expressed as

Y,
A=Ab= T V=12 N a4
i

and the surface concentrations are expressed as
Aj = [Bi(9)] = psX; Vi = Ng+1,..., Ng+ Ns, (15)

with p,, and ps being gas-phase mass density and surface site density, respectively.
surface site density, we mean the total surface concentration (in moles per unit area) c
the surface-adsorbed species of a particular type 14nd X; are the gas-phase mass-
fractions and surface site fractions, respectivaly.are the molar surface concentrations
expressed in moles/areq; is the stoichiometric difference and may be written as

o aj—ay;  Yk=1....Ng (16)
. i —by  Yk=Ng+1...,Ng+Ns

Substitution of Egs. (11) and (13) through (16) into Eq. (8) yields a s&lyafonlinear
simultaneous equations for the near-wall mass-fractions (or molar concentrations) of
gas-phase species. It is generally convenient to use the balance equation on a molar
rather than on a mass basis, if one intends to implement chemistry involving surfa
adsorbed species. This is because for surface sites, mass is meaningless. Thus, in ge
the reaction—diffusion balance equation for the gas-phase species may be rewritten as

Di[Akc — (o/pw) Ak w] I ¢
5 M Sc(Axw) —

JsAx,w

Vk=1,2,...,Ng. (17)
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For surface-adsorbed species, the diffusion flux and Stefan fluxes are zero, and there

The solution of Egs. (17) and (18) provide the surface (or wall) molar concentratigps,
Once these have been obtained, the diffusion flux (Eq. (2)) can be computed easily. -
appears as a source for the control-volume adjacent to the wall in a standard finite-voll
scheme. The key issue, thus, is the numerical solution of the set of equations represe
by Egs. (17) and (18).

Equations (17) and (18) may be rewritten in more compact form as

f(A)=0 Vi=12...,Ng+Ns (19)

Because of the nonlinearity (often strongf dEq. (19) cannot be solved by direct inversion
and can only be solved by an iterative procedure, such as Newton iteration. Althot
this follows standard, well-known algorithms and procedures, it is discussed here brie
because certain numerical problems to be discussed shortly require direct reference t
solution technique for Eq. (18). Linearization of Eqg. (19), followed by rearrangemer
yields

of
whereA = {Ag, Az, ..., Ang, - -, AngiNG) IS the concentration array and the subscript C

denotes its value at the previous iteration or guass.is the change in the mass-fraction
array, andf/d A is the Jacobian matrix. Since Eq. (20) is alinearized form of Eq. (19), it wil
require successive iterations until the error goes to zero (the Newton iteration procedt
Note that the subscript/” has been dropped for convenience.

If the surface reaction mechanism is such that only gas-phase species are present, Ec
can be solved “as is” without much difficulty. If, however, the surface chemistry mechanis
involves surface-adsorbed species, as is often the case, the system of equations defin
Eqg. (19) may be ill-posed, and special treatment is necessary. In order to understand
this occurs, it is easiest to consider an example of a simple surface chemistry mechat
involving surface-adsorbed species. Consider the following two-step mechanism, wh
often is employed for the CVD of silicon from silane:

Step 1: SiH 4+ OPEN(s)=> Si(s)+ 2H,
Step 2: Si(s)=> Si(b) + OPEN(s).

In the first step, silane gets adsorbed onto an open site to form surface-adsorbed sil
(denoted by (s)) and releases gaseous hydrogen. In the second step, the adsorbed sili
incorporated into the film as bulk (denoted by (b)) and releases an open site. Let the spe
be numbered as follows for the sake of convenience=H, SiH, = 2, OPEN(s)= 3,
SI(s)= 4, and Si(b)= 5. Using Eq. (13), the molar production rate of OPEN(s) and Si(s
may be written as

S = —kiAsAz + koAs, Sy =KiAzAz3 —KoAy, (21)
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wherek; andk; are forward rate constants of steps 1 and 2, respectively. When substitu
into Eq. (18), we get two equations, which are identical, and thus the system of equatit
described by Eq. (19) is ill-posed. The problem may be circumvented by introducing
pseudotransient solution procedure. Equation (18) is valid only at steady state. For tran:
calculations, one has to account for the “storage” of surface-adsorbed species. The resic
time of a species at the surface will depend on the relative time-scales of adsorption
desorption. For such a case, Eq. (18) may be appropriately modified to

Ak w
ot

= AsS(Akw)  Vk=Ng+1, ..., Ng+ Ns, (22)

where Ag is the surface area. The transient term vanishes at steady state. In the cul
numerical scheme, instead of eliminating that term for steady state calculations, we rew
it in discretized form as

Axw — A} .
g = ASS(Akw) Yk=Ng+ Lo Nyt Ns, (23)
whereAg , is the value of the wall concentration at the previous time step for transie
calculations and the value of the wall concentration at the previous iteration for steady s
calculations. When linearization is once again implemented, instead of Eq. (20) we h
an equation of the following form for the surface-adsorbed species. Ngek 1 <i <

Ng + Ns):

1 of A — A
<At+aA>AA:—<f(Ao)+ N ) (24)

At steady stateAA = 0, and Eq. (19) is recovered. For steady state calculations, a
arbitrary value can be assignedd. The additional pseudotransient term actually serve
to relax the equations, and thus the valuébfrepresents how strong the relaxation is. The
smaller the value of\t, the larger is the relaxation applied to the equation. In practice,
was found that a value akt = 1 keeps the equation system stable for even very comple
mechanisms. This numerical treatment of introducing a pseudotransientterm for the surf
adsorbed species for steady state computations removes the “ill-posed-ness” of the equc
described earlier.

All of these models and schemes were implemented into the commercial unstructt
finite-volume CFD code, CFD-ACE+. The governing equations are the equations of c
servation of mass, momentum, energy, and species. Detailed discussion of the govel
equations may be found elsewhere [8, 9, 22].

3. RESULTS AND DISCUSSION

The accuracy and effectiveness of the numerical scheme described earlier for unstruct
meshes was first verified by systematically comparing results obtained from unstructt
grid computations with those obtained using perfectly orthogonal (nonskewed) grids. F
lowing these studies, validation studies were conducted for a full-scale industrial MOC)



520 MAZUMDER AND LOWRY

300K

(0,10) \\ (20,10)

Inflow

U=0.1 m/s, T=300K, Yr,,6=0.00614,
Y, 415=0.08246, Y;,,=0.9114

©0 /150 /’ (12.5,0) ‘\ (20,0
30

0K
973K 300K

FIG.3. Geometry and boundary conditions for two-dimensional verification study. Coordinates shown are
centimeters.

reactor to highlight the accuracy of the overall surface reaction boundary treatment discus
in Section 2.

The verification studies were first performed for a relatively simple two-dimension
geometry, which is shown in Fig. 3. The boundary conditions also are depicted on |
same figure. Computations were performed in this geometry using perfectly orthogo
quadrilateral elements as well as unstructured triangular elements to study gallium arse
deposition. The reaction mechanisms used for the simulations consisted of an 11-step
phase reaction mechanism (Table 1) and a 25-step surface chemistry mechanism (Tabl

TABLE |
Gas Phase Reactions for Multistep GaAs Mechanism

No. Gas-phase reaction A E/R n Source for reaction rate

G1 TMG < CH; + DMG 1.6E17 30057 0  Tirtowidjojo and Pollard [14, 15]
G2 DMG « CH; + MMG 2.5E15 17883 0  Tirtowidjojo and Pollard [14, 15]
G3 CH; +H; <+ CH,+H 1.2E9 6300 0  Tirtowidjojo and Pollard [14, 15]
G4 AsH; + CH; <> AsH, + CH, 9.7E8 900 0 Jensestal [3], Ernetal [9]

G5 TMG+ H <> DMG + CH, 5.0E10 5051 0 Jensatal [3], Enetal [9]

G6 DMG+ H <> MMG + CH, 5.0E10 5051 0 Jensatal [3]; Ernetal [9]

G7 2H+M < H, + M 1.0E13 0 0 Jenseetal [3]; Ernetal [9]

G8 2CH < CyHg 2.0E10 0 0 Jensestal [3]; Ernetal[9]

G9 CH+H+M <« CH,+M 2.4E19 0 -1 Jensertal [3]; Ernetal[9]

G10 TMG+ CH; <» ADDUCT +CH, 2.0E8 5051 0 Jensestal [3]; Ernetal [9]

G11 MMG <« Ga+ CH; 1.0E16 39052 0  Tirtowidjojo and Pollard [14, 15]

Note Reactions G1 and G2 have been known to be pressure dependent (Tirtowidjojo and Pollard [14, 15]
The values of A, provided here, are at 1 atm. The reactions that lead to GaC formation have been eliminat
from Jensen’s mechanism to simplify the chemistry. The net effect of all these subsidiary reactions has be
modeled using G10, which is necessary to consume some quantity of TMG. The product ADDUCT can be
single complex or a combination of complex intermediate products. G11 was included to model the formatio
of gallium (maybe liquid) and its subsequent direct adsorption (see surface chemistry reactions S24 and S2
The reverse rates were calculated by minimization of the Gibb’s free energy. The rate constant A has units
1/s for unimolecular reactions and®s/kmol for bimolecular reactions. DMG and MMG are dimethyl and
monomethyl gallium, respectively. M refers to a third body.
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TABLE Il
Surface Reactions for Deposition of GaAs from Trimethyl Gallium (TMG) and Arsine

No. Surface reaction A E/R n Source for reaction rate
S1 H+ SG— HG(s) 4.95E9 0 0.5 Jensenal [3], Ernetal [9]
S2 H+ SA — HA(S) 4.95E9 0 0.5 Jensatal [3], Ernetal[9]
S3 CH + SA — CH;A(s) 1.27E9 0 0.5 Jenseatal [3], Ermnetal [9]
CH; + SA <~ CH;A(s) 1.0E12 10103 O Tirtowidjojo and Pollard [14, 15]
S4 CH + SG— CHsG(s) 1.27E9 0 0.5 Jensenal [3], Ernetal [9]
CH; + SG < CH3G(s) 1.0E12 10103 O Tirtowidjojo and Pollard [14, 15]
S5 MMG + SG — MMG(s) 5.37E8 0 0.5 Jensatal [3], Ernetal[9]
MMG + SG < MMG(s) 1.0E13 20206 O Tirtowidjojo and Pollard [14, 15]
S6 DMG+ SG— MMG(s) + CH; 4.95E8 0 0.5 Jensestal [3], Ernetal [9]
S7  AsH4SA — AsH(s) 5.68E8 0 0.5 Jensenal [3], Ernetal [9]
Ash+ SA « AsH(s) 1.0E13 20206 O Tirtowidjojo and Pollard [14, 15]
S8 AsH + SA — AsH(s)+H 5.68E8 0 0.5 Jensatal [3], Enetal [9]
S9  Ashk+ SA — AsH(s)+ H, 5.68E8 0 0.5 Jensestal [3], Emetal [9]
S10 CH-+HG(s)— CH,+SG 1.26E8 0 0.5 Jensental [3], Ernetal [9]
S11 CH+HA(s)—» CH,+SA 1.26E8 0 0.5 Jensetal [3], Ermetal [9]
S12 H+ CH;G(s)— CH,+SG 4.94E8 0 0.5 Jensenal [3], Ernetal [9]
S13  H+ CHA(S) > CH,+ SA 4.94E8 0 0.5 Jensatal [3], Ernetal [9]

S14 HG(sH CHzA(s) —» CH,+ SA+SG 1.0E16 5051 O Jensenal [3], Ernetal. [9]

S15 HA(sH CHs;G(s)— CH;+ SA+SG 1.0E16 5051 O Jensenal. [3], Ernetal. [9]
S16 HA(SH HG(s)— H,+ SA+SG 1.2E16 10102 O Jensenal. [3], Ernet al. [9]
S17 CHA(S)+CH;G(s)— C,Hs+SA+SG 1.0E16 10102 O Jensenal. [3], Ernet al. [9]
S18 MMG(sH AsH(s)— CH,+ SA+ SG 5.0E17 14801 O Jensenal. [3], Ernet al. [9]
+ GaAs(b)
S19 MMG(sH As(s)— CHz; + SA+SG 5.0E17 10103 O Jensenal. [3], Ernet al. [9]
+ GaAs(b)
S20 2AsH(s)> As, + H,+2SA 1.0E16 19681 O Jensenal [3], Ernetal. [9]
S21 CH+ AsH(s)— As(s)+ CH, 1.28E8 10103 0.5 Jensenal [3], Ernetal [9]
S22 2As(s)> As,+2SA 1.0E17 15155 O Jensenal. [3], Ernetal. [9]
2As(S)« As, + 2SA 1.0E29 15155 O calibrated
S23  TMG+ SG— MMG(s)+ 2CHg 4.62E8 0 0.5 Jensestal [3], Emetal [9]
S24  Gat SG— Ga(s) 5.9E8 0 0.5 Ingletal [10]
Ga+ SG « Ga(s) 1.0E13 22732 0  Ingktal [10]

S25 Ga(s} As(s)— SA+ SG+ GaAs(b) 1.1E9 505 0 Inglet al. [10]

Note The reactions wittE/R = 0 have rates based on a sticking coefficient, which has been converted
a general rate with a temperature exponent of 0.5. S24 and S25 have been added to Jensen’s mechan
model adsorption—desorption kinetics of gallium at high temperatures. The rate constants are in S| units (k
K, J, m, s.). SA and SG are open arsenic and gallium sites, respectively. Both types of sites have a total
concentration of B4 x 10~° kmol/n?. (s) denotes an adsorbed species. (b) denotes a deposited bulk spec
CH;G(s) and CHA(s) represent adsorbed Gliadicals on gallium and arsenic sites, respectively. The same
nonmenclature has been used for adsorbed hydrogen radicals.

Such complex chemistry was chosen to emphasize the ability of the above numerical sct
to treat extremely stiff and complex reaction kinetics, which is a common occurrence
commercial applications. The details pertaining to the reaction mechanism used here
be found elsewhere [22]. The grid was refined in several stages to obtain grid-indepen
solutions. Figure 4 shows simulation results obtained using quadrilateral (structured)
triangular (unstructured) grid elements for the two final stages of refinement. It is cle
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FIG. 4. Deposition rate of gallium arsenide on substrate for two-dimensional geometry.

from this figure that the results are practically independent of what type of grid was us
for the simulations. Similar studies also were performed for a simple 3D geometry (Fig.
using tetrahedral (unstructured) finite-volume cells and perfectly orthogonal hexahec
cells. These results were obtained using a simple one-step surface reaction mechanis
to minimize computational time requirements. The results are depicted in Fig. 6. Or
again, it is seen that the results obtained by orthogonal and skewed grids are in c
agreement.

Cross-section: 0.1m x 0.1 m

Length: 0.2 m

Outflow
Reacting surface: 0.05 m

from 0.075 m to 0.125 m
All walls at 300K

I
~ / Reacting
/ / Surface (973K)

Inflow (0.5m/s, ﬁnm Yipe = 001128, Y, o, = 01513, ¥y, = 0.83742)

FIG.5. Geometry and boundary conditions used for three-dimensional verification study.
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0.3
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24

(b)

FIG. 6. Deposition rate of gallium arsenide on substrate for three-dimensional geometry: (a) structured ¢
(37,600 hexahedral cells), (b) unstructured grid (42,270 tetrahedral cells).

Following these studies, computations were performed on a full-scale commer
MOCVD reactor. The actual reactor geometry, its 2D computer model, and the unstructt
triangular grid are shown in Fig. 7. Simulations were performed in this reactor using boul
ary conditions that mimic the actual operating conditions, which were used to collect exp
mental data [4]. In addition to solution of the equations of conservation of mass, moment
energy, and species, the equation of radiative transport was solved using a Monte Carl
proach, which was developed as part of a separate study [23, 24]. Since the substrate
973 K and is surrounded by a cold medium (300 K), the dominant mode of heat loss fr
it is by radiation. The radiative energy impinges on the reactor walls made of fused sili
causing the temperature of these walls to go up to about 600 K. This results in parasitic
position on the reactor walls, a surface phenomenon, which is rate-limited and is descr
elsewhere [6, 13, 22]. Itis important to note that rate-limited parasitic deposition on reac
walls has to be predicted accurately in order to correctly predict deposition on the tar
substrate [22]. The species mass diffusion coefficients and thermodiffusion (or Soret di
sion) coefficients were computed using their Lenard—Jones potentials and the kinetic th
of gases [25]. All of these models are available as part of the standard CFD-ACE+ softw
the details of which may be obtained from t8€D-ACE+ Theory Manuaj26]. Figure 8
shows the comparison between numerical and experimental results. Itis clear that the ir
is excellent. The oscillations in the profile are the result of the triangles next to the wall |
all being equal in size. This causes the diffusion length-séalat adjacent cell faces to
be slightly different, consequently producing small oscillations in the deposition rate. T
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FIG. 7. Geometry (side view) and unstructured grid used for validation studies of the Crystal Specialt
Model 425 horizontal MOCVD reactor. (a) Photograph of actual reactor. (b) Side view of reactor. The gr
sections are made of fused silica, and the black section is the graphite substrate. (c) Unstructured triangular
of the whole geometry, which shows local refinement on the area around the substrate, especially just upst
of the substrate’s leading edge. (d) Close-up of the grid around the substrate.

prediction of the “spike” in deposition at the leading edge of the substrate can be predic
only by tremendous grid refinement in that region. Such local refinement was easily p
sible with an unstructured triangular mesh (Fig. 7d), highlighting the advantage of usi
an unstructured mesh. With the aid of the rigorous mathematical treatment of surface r
tions described in this article, it is now possible to model the entire computational dom
using an unstructured mesh. This was not considered a feasible option until now bec:
of the difficulty in implementing surface reaction boundary conditions for unstructure
meshes.
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FIG. 8. Comparison of numerical predictions against experimental data of Blzak[4].

4. CONCLUSIONS

A rigorous and robust numerical scheme to treat surface reaction boundary conditi
has been presented and demonstrated in this article. The general practice in modeling
reactors, until now, was to model the interior of the reactor using a structured mesh. 1
poses problems for complex geometry and makes local grid refinement difficult. Us|
the numerical procedure described above, it is now possible to model the reactor inte
using an unstructured mesh. This is useful particularly for modeling commercial MOC\
reactors, where it is necessary to model not only the reactor interior but also its extel
which typically consists of complex 3D helical coils that are practically impossible to mod
using structured grids.
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